An improved particle swarm optimization algorithm for dynamic analysis of chain drive based on multidisciplinary design optimization

Author:

Chai Mengjiang1ORCID,Yuan Yongliang2,Zhao Wenjuan1

Affiliation:

1. School of Mechanical Engineering, Weifang University of Science and Technology, Weifang, China

2. School of Mechanical Engineering, Dalian University of Technology, Dalian, China

Abstract

Chain drive is one of the most commonly used mechanical devices in the main equipment transmission system. In the past decade, scholars focused on basic performance research, but ignore its best performance. In this study, due to the large vibration of the chain drive in the transmission system, the vibration performance and optimization parameters are also considered as a new method to design the chain drive system to obtain the best performance of the chain drive system. This article proposes a new method and takes a chain drive design as a case based on the multidisciplinary design optimization. The system optimization objective and sub-systems are established by the multidisciplinary design optimization method. To obtain the best performance for the chain, the chain drive is executed by an improved particle swarm optimization algorithm. Dynamic characteristics of the chain drive system are simulated based on the multidisciplinary design optimization results. The impact force of the chain links, vibration displacement, and the vibration frequency are analyzed. The results show that the kinematics principle of the chain drive and the optimal parameter value are obtained based on the multidisciplinary design optimization method.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the rigid-discrete coupling effect of scraper conveyor under different chain speed-load conditions;Simulation Modelling Practice and Theory;2024-07

2. The Design of Decoupled Robotic Arm Based on Chain Transmission;Machines;2024-06-15

3. Vibration simulation analysis and structural optimization of used power battery transmission system;5th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023);2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3