Computational fluid dynamics trimming of helicopter rotor in forward flight

Author:

Zhou Chenglong1ORCID,Chen Ming1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing, China

Abstract

A computational fluid dynamics (CFD) trimming method based on wind tunnel and flight test data is proposed. Aerodynamic coefficients obtained for a helicopter rotor using this method were compared with both experimental data from a test report and CFD results based on the control parameters that were reported in the same document. The method applies small disturbances to the collective pitch angle, the lateral cyclic pitch angle and the longitudinal cyclic pitch angle of the helicopter’s main rotor during forward flight to analyze the effects of each disturbance on the thrust coefficient, the pitching moment coefficient and the rolling moment coefficient of the rotor. Then, by solving a system of linear equations, the collective pitch angle, the lateral cyclic pitch angle and the longitudinal cyclic pitch angle of the main rotor in the CFD trim state are obtained. The AH-1G rotor is used in this paper. NASA has conducted a comprehensive flight test program on this model and has published detailed test reports. Using this method, the pitch moment and the roll moment can be corrected to almost zero and the calculated thrust coefficient is more consistent with the test data when compared with results from direct CFD simulations.

Funder

national basic research program of china

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3