Improvement of noise reduction performance in bellows using multilayer perforated panels

Author:

Noh Hee-Min1ORCID

Affiliation:

1. Transportation Environmental Research Team, Korea Railroad Research Institute, Uiwang-si, Gyeonggi-so, South Korea

Abstract

When the speed of a railway vehicle increases, the level of noise inside the vehicle inevitably increases as well, which is a major cause of discomfort to passengers. The most effective method is to improve the overall noise reduction performance of a vehicle. In particular, the gangway of the railway vehicle is made of silicone rubber; therefore, its noise reduction performance is inferior to that of other components of the vehicle. Thus, it is essential to improve the interior noise performance of railway vehicles. This study aims to reduce the noise in the low-frequency region of a railway vehicle gangway. It examines the applicability of the multi-layered resonance type panel, which has not been previously applied to the bellows in railway vehicles. In particular, the transmission loss was improved by changing the structure without filling the bellows with sound-absorbing material. First, a theoretical review of the noise reduction performance of a perforated multilayer structure was performed. Based on this, the major design parameters of the perforated multilayer structure that are effective in reducing noise in the low-frequency region of the bellows were derived. Through this, it was confirmed that in the multilayered structure, the hole diameter of 1 mm was effective in increasing the transmission loss in the low-frequency region, and the transmission loss was improved at 1% of the porosity. In addition, through a simple two-dimensional analysis model, it was confirmed that the transmission loss of the porous panel was improved at low frequencies of 100 to 400 Hz. Based on this result, a gangway with perforated multilayer structures was developed and tested. Through this verification test, it was confirmed that the noise performance of 9.2 dB was an improvement in the low frequency range of 100 Hz.

Funder

Korea Railroad Research Institute

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3