Numerical study on the flow characteristics of centrifugal compressor impeller with crack damage

Author:

Liang Zhaoyu1,Xiang Longhao1,Wei Xuesong1ORCID,Chen Songying1,Liu Jingting1,Hao Zongrui2

Affiliation:

1. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, China

2. Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China

Abstract

The distribution and characteristics of internal flow field of the impeller with crack damage in service environment was investigated via numerical simulation with RNG k-ε turbulence model. The diffuser and volute are added based on the original impeller to simulate the internal flow field comprehensively. It was found that along the flow direction, the pressure, velocity, and temperature of the fluid increase continuously, and the maximum value appears near the outlet of the impeller. The maximum pressure and velocity in the crack area are distributed around the middle section and the trailing edge of the crack. Entropy production theory was applied in the study of internal flow, which reveals that the entropy production becomes larger around the crack. The further propagation of the crack is promoted by the opening force perpendicular to the entrance direction of the middle crack, the corrosion propagation at the rear edge of the crack, and the thermal deformation of the blade. The accelerated crack process will finally lead to the blade fracture accident.

Funder

Ocean Industry Leading Talent Team of Yantai’s Double Hundred Plan

China Postdoctoral Science Foundation

The Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3