Affiliation:
1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
Abstract
The milling robot normally has a low stiffness which may easily cause chatter during machining. This article presents a novel eddy current damper design for chatter suppression in the robotic milling process. The designed eddy current dampers are installed on the milling spindle to damp the tool tip vibrations. The structural design and the working principle of the eddy current dampers are explained. The magnetic flux density distribution and the magnetic force generation of the designed eddy current damper are analyzed with the finite element method. The tool tip dynamics without and with eddy current dampers are modeled, and the damping performance of the proposed eddy current dampers in the robotic milling process is verified through both simulations and experiments. The results show that the peaks of the tool tip frequency response function caused by the milling tool modes are damped significantly, and the stable depth of cut is improved greatly with eddy current dampers.
Funder
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献