Investigation of dynamic stress of rotor in residual heat removal pumps based on fluid–structure interaction

Author:

Zhou Banglun1,Yuan Jianping1,Fu Yanxia2,Hong Feng1,Lu Jiaxing1

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang, China

2. School of Energy and Power Engineering, Jiangsu University, Zhenjiang, China

Abstract

Vibration and dynamic stress caused by the interaction between the fluid and the structure can affect the reliability of pumps. This study presents an investigation of internal flow field and the structure response of residual heat removal pump using a combined calculation for turbulent flow, and the structure response of rotor was first defined using a two-way coupling method. For the calculation, the flow field is based on the shear stress transport k–ω turbulence model and the structure response is determined using an elastic structural dynamic equation. The results show that the domain frequencies of pressure fluctuations of monitors on the outlet of impeller are the integer multiples of rotating shaft frequency ( fn) and the amplitude of the relatively large pressure fluctuation peak is the lowest under the design flow rate operating condition. Meanwhile, the time-average radial force value at the design flow rate condition is the smallest and the hydraulic force magnitude at the maximum operating flow rate condition is the largest, and phase difference can be clearly seen among the results obtained under different flow rates. Furthermore, the relatively large stress of rotor for all operating conditions is the biggest at shaft shoulder where the bearing is installed, and it increases with flow rate.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3