Evaluation of particle size distribution of granular blasting materials based on the fractal theory

Author:

Ji Jiejie12,Yao Qiang12ORCID,Wu Faming3,Li Hongtao12ORCID

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China

2. College of Water Resource and Hydropower, Sichuan University, Chengdu, China

3. China Three Gorges Projects Development Co., Ltd, Chengdu, China

Abstract

The particle size distribution of granular blasting materials has a vital influence on the filling quality of earth-rockfill dams. The engineering experience-based method used to evaluate the particle size distribution has shortcomings at both the theoretical and practical aspects. This article proposes a new evaluation method based on the fractal theory. Grading sieve tests on granular materials, mass fractal analysis of particle size distribution, and a probability distribution model test of the characteristic parameters are used to revise the functional relationships between the fractal dimension D and the uniformity coefficient/curvature coefficient ( Cu/ Cc) of the grading curve. The feasibility of using D to evaluate the particle size distribution and the optimal fine grain content is then analyzed and determined. According to the results, the geometric shapes of the granular blasting materials have fractal characteristics, and their particle size distribution has a fractal distribution. The ranges of D where the rockfill and transition materials have a good particle size distribution are D = 2.254–2.529 and D = 2.358–2.559, corresponding to optimal fine grain content of 1.953%–11.805% and 10.268%–23.123%, respectively. Fractal dimension has a solid theoretical basis and strong practical applicability as an evaluation index for the particle size distribution of granular blasting materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3