Buoyancy effects on nanoliquids film flow through a porous medium with gyrotactic microorganisms and cubic autocatalysis chemical reaction

Author:

Zuhra Samina12,Khan Noor Saeed1ORCID,Alam Muhammad3,Islam Saeed1,Khan Aurangzeb4

Affiliation:

1. Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan

2. Departments of Computing and Technology, Abasyn University, Peshawar, Pakistan

3. Department of Civil Engineering, Abasyn University, Peshawar, Pakistan

4. Department of Physics, Abdul Wali Khan University, Mardan, Pakistan

Abstract

This article is based on the mathematical model constructed to analyze the simultaneous flow and heat transfer of two nanoliquids (Casson and Williamson) in the presence of gyrotactic microorganisms and cubic autocatalysis chemical reaction through a porous medium under the potentiality of buoyancy forces. Heterogeneous reaction existing on the surface is described by isothermal cubic autocatalytic chemical reaction, whereas homogeneous reaction is taking place at far field described by first-order kinetics. Similarity transformations are used to get the different order differential equations from the governing equations which are solved via an efficient technique namely homotopy analysis method. The effects of all the non-dimensional parameters on velocity, temperature, concentration, and density of motile microorganisms are shown through graphs and elucidated. Velocity increases with the Weissenberg parameter and decreases with the Casson nanofluid parameter in the presence of magnetic field and porous medium. Temperature decreases with the high values of slip condition. The dual behavior of concentration profile for the strength of homogeneous reaction parameter is observed. Flow of microorganisms decreases based on the parameters of porous medium, magnetic field, and heterogeneous chemical reaction. There exists an excellent agreement between the present and published work.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3