Process parameters optima in quick-point grinding ceramics based on the intelligent algorithm

Author:

Zhou Yunguang1,Ma Lianjie12,Tan Yanqing1,Liu Tao1,Li Hongyang1

Affiliation:

1. School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, China

2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

Abstract

This article studied the relationship between surface roughness and surface micro hardness of the hard-brittle materials and the process parameters in quick-point grinding, and then established the prediction model for the surface micro hardness and surface roughness by the back propagation network which was an improved genetic algorithm. Through the experiments of the quick-point grinding of ceramics, surface roughness and surface micro hardness were tested, and reliability of the model was validated thereby. Based on the least square fitting of the experiment value and prediction value, the one-dimensional analytic model for surface roughness and surface micro hardness had been, respectively, developed in terms of grinding speed, grinder work-table feed speed, grinding depth, incline angle, and deflection angle as process parameters. Both the correlation test and experiment verification indicated that the model exhibited a high level of accuracy. The multivariate model of surface roughness and surface micro hardness can be constructed by means of immune algorithms and orthogonal experiment data. With the optimum objective of the minimum surface roughness and maximum surface micro hardness, a set of optimized process parameters was obtained using immune algorithms, and experiment verification proved that the error value was less than 10%.

Funder

northeastern university at qinhuangdao

natural science foundation of hebei province

national natural science foundation of china

fundamental research funds for the central universities

The Science and Technology Research Project for Higher School of Hebei Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3