Blade profile optimization of pump as turbine

Author:

Miao Sen-chun1,Yang Jun-hu1,Shi Guang-tai1,Wang Ting-ting1

Affiliation:

1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, China

Abstract

One major focus on the performance researches of pump as turbine is how to enhance the efficiency of energy recovery. While the key point of increasing the efficiency is to improve the performance of the blade profile which is structural basis of the blade geometry. This article presents an optimization method for the blade profile. It contained the parameterization of blade profile, the Latin Hypercube experimental design, the computational fluid dynamics techniques, the back propagation neural network, and genetic algorithm. Specifically, the nonuniform cubic B-spline curve was used to parameterize the blade profile, the Latin Hypercube experimental design method for the acquirement of the sample points of back propagation neural network. The performance analysis of each sample point was accomplished by the computational fluid dynamics techniques. Then, the learning and training of the back propagation neural network was carried out. Finally, the optimization techniques of combining the back propagation neural network and genetic algorithm were used to solve the optimization problems of the blade profile. Based on the above method, the blade profile of a pump as turbine was optimized and improved. The result shows that the efficiency of the optimized pump as turbine under the optimum operating condition was increased by 2.91%, with the constraint condition to ensure that the difference between the head and the initial head of the pump as turbine is less than the specified value. This proves that using the above method to optimize the blade profile is feasible.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3