Prediction model for bead reinforcement area in automatic gas metal arc welding

Author:

Shim Ji-Yeon1,Zhang Jan-Wei2,Yoon Han-Yong3,Kang Bong-Yong1,Kim Ill-Soo3

Affiliation:

1. Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology (KITECH), Jeonju, Republic of Korea

2. School of Electromechanical and Vehicle Engineering, Yantai University, Yantai, China

3. Department of Mechanical Engineering, Mokpo National University, Jeonnam, Republic of Korea

Abstract

Automatic welding systems are widely used for high-volume production industries, where the cost of related equipment is justified by the large number of pieces to be made. Detailed movement devices are required, including predetermined welding parameter sequences and timers, to form the weld joints. Automatic gas metal arc welding processes require new mathematical models to predict optimal welding parameters for a given bead geometry to accomplish the desired mechanical properties of the weldment. The developed algorithm should be able to be employed across a wide range of material thicknesses and all welding positions, and available in analytical form to be easily applied to the welding robot with high degree of confidence in predicting bead dimensions. Therefore, this study investigated welding voltage, arc current, welding speed, contact tube weld distance, and welding angle on bead reinforcement area for automated gas metal arc welding processes using a central composite design to generate response surface methodology and artificial neural network models. Average absolute deviation was used to compare accuracy between the two models. Analysis of variance showed coefficients of determination of 0.894 and 0.948 with average absolute deviation 4.01% and 3.11% for the response surface methodology and artificial neural network models, respectively. This suggests that artificial neural network is a better modeling technique for predicting bead reinforcement area compared to response surface methodology.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3