Life prediction of heavy-load self-lubricating liners

Author:

Hao Xiuhong12ORCID,Wang Shuqiang12,Huo Panqiang12,Pan Deng12

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Hebei, China

2. Key Laboratory of Self-Lubricating Spherical Plain Bearing technology of Hebei Province, Yanshan University, Qinhuangdao, China

Abstract

To address the issues of long testing periods and small sample sizes while evaluating the service life of heavy-load self-lubricating liners, we propose a succinct method based on Monte Carlo simulation that is significantly fast and requires a small sample size. First, the support vector regression algorithm was applied to fit the degradation trajectories of the wear depth, and the first and second characteristic parameter vectors of the wear depth as well as the corresponding distribution models were obtained. Next, sample expansion was performed using Monte Carlo simulation and the inverse transform method. Finally, based on the failure criterion of the self-lubricating liner, the service lives and distribution models of the expanded samples were obtained; subsequently, the corresponding reliability life indices were provided. Our results indicate that when the expanded sample was large enough, the proposed prediction method exhibited a relatively high prediction accuracy. Therefore, these results provide theoretical support for shortening the testing cycle used to evaluate the service life of self-lubricating liners and for accelerating the research and development of self-lubricating spherical plain bearing products.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3