A third-order two-step numerical scheme for heat and mass transfer of chemically reactive radiative MHD power-law fluid

Author:

Nawaz Yasir1,Abodayeh Kamaleldin2,Arif Muhamamd Shoaib1ORCID,Ashraf Muhammad Usman3

Affiliation:

1. Department of Mathematics, Air University Islamabad, Islamabad, Pakistan

2. Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia

3. Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad, Pakistan

Abstract

A two-stage third-order numerical scheme is proposed for solving ordinary differential equations. The scheme is explicit and implicit type in two stages. First, the stability region of the scheme is found when it is applied to the linear equation. Further, the stability conditions of the scheme are found using a linearized homogenous set of differential equations. This set of equations is obtained by applying transformations on the governing equations of heat and mass transfer of incompressible, laminar, steady, two-dimensional, and non-Newtonian power-law fluid flows over a stretching sheet with effects of thermal radiations and chemical reaction. The proposed scheme with an iterative method is employed in two different forms called linearized and non-linearized. But it is found that the non-linearized approach performs better than the linearized one when residuals are compared through plots. Additionally, the proposed scheme is compared to the second-order central finite difference method for second-order non-linear differential equations and the Keller-Box/trapezoidal method for a linear differential equation. It is determined that the proposed scheme is more effective and computationally less expensive than the standard/classical finite difference methods. Moreover, the impact of magnetic parameter, radiation parameter, modified Prandtl and Schmidt numbers for power-law fluid, and chemical reaction rate parameter on velocity, temperature, and concentration profiles are displayed through graphs and discussed. The power-law fluid’s heat and mass transfer simulations are also carried out with varying flow behavior index, sheet velocity, and mass diffusivity. We hoped that this effort would serve as a guide for investigators tasked with resolving unresolved issues in the field of enclosures used in industry and engineering.

Funder

Prince Sultan University

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3