Analysis of thin film flow of generalized Maxwell fluid confronting withdrawal and drainage on non-isothermal cylindrical surfaces

Author:

Ullah Saif1ORCID,Akhtar Kareem2ORCID,Khan Nadeem Alam3,Ullah Arshad1

Affiliation:

1. Department of Mathematics, Government College University, Lahore, Pakistan

2. Department of Mechanical Engineering, University of Engineering & Technology, Peshawar, Pakistan

3. Department of Computer Science, Iqra University, Karachi, Pakistan

Abstract

This investigation is concerned with the study of thin film flow of a generalized Maxwell fluid along with slip conditions, confronting withdrawal and drainage on non-isothermal cylindrical surfaces. The governing equations have been formulated from the continuity equation, momentum equation, and energy equation. Analytical solutions for the velocity field, volume flow rate, average film velocity, tangential stress, and temperature are obtained in series form through the Binomial expansion technique in both withdrawal and drainage cases. The well-known solutions for a Newtonian fluid are regained as a particular case of our acquired general solutions in all flow cases. In addition, solutions for the power-law fluid model, executing alike motion, can be recovered as a limiting case of our acquired general solutions. The influence of different dimensionless parameters on all physical quantities (i.e. velocity, volume flow rate, average film velocity, tangential stress, and temperature profile) is examined and discussed graphically for both generalized Maxwell and Newtonian fluids.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3