Accuracy analysis and optimization of infrared guidance test device

Author:

Wang Zhou1,Chen Yin1,Wang Tao2,Zhang Bo1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China

2. School of Mechanical Engineering, Hebei University of Technology, Tianjin, China

Abstract

As an important modern weapon, the development of infrared-guided missile reflects comprehensive national strength of a country. Therefore, it is especially important to establish a semi-physical simulation device to test the performance of missile, and the test device requires high accuracy. Based on the above background, an infrared guidance test device is designed in this article. The accuracy of its shell and rotating mechanism are studied in detail, and the error factors are quantified to provide theoretical basis for structural optimization. The orthogonal experiment design reduces the number of sensitivity analysis experiments on key design parameters. Factors affecting the maximum deformation and overall quality of the shell were determined. The range method was used to analyze sensitivity factors, and the final optimization result that met the minimum deformation and minimum quality was determined. Experimental results show that the rotation error of the main shaft of the rotating mechanism includes axial, radial, and angular motion errors, and experimental value is basically consistent with theoretical value. After the shell optimization, the infrared target pointing error [Formula: see text] and the infrared target position offset error ξ′ = 0.1525 mm meet the accuracy requirements. This method can provide new ideas for precision research and optimization of structural design of rotating mechanism.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference21 articles.

1. Wu CG. Simulation technology. Beijing, China: Chemical Industry Press, 2000, pp.220–256.

2. Chang Q. Research on key technology of cruise missile guidance system. Shaanxi, China: Northwestern Polytechnical University, 2003, pp.14–16.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SiamITO: A Lightweight Siamese Network for Infrared Tiny Object Tracking;2022 China Automation Congress (CAC);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3