Two-phase flow of MHD Jeffrey fluid with the suspension of tiny metallic particles incorporated with viscous dissipation and Porous Medium

Author:

Ge-JiLe Hu1,Nazeer Mubbashar2ORCID,Hussain Farooq3ORCID,Khan M Ijaz4ORCID,Saleem Adila5,Siddique Imran6

Affiliation:

1. School of Science, Huzhou University, Huzhou, P.R. China

2. Department of Mathematics, Institute of Arts and Sciences, Government College University Faisalabad, Chiniot Campus, Pakistan

3. Department of Mathematical Sciences (FABS), BUITEMS, Quetta, Pakistan

4. Department of Mathematics and Statistics, Riphah International University Islamabad, Islamabad, Pakistan

5. Department of Mathematics, Riphah International University, Faisalabad Campus, Pakistan

6. Department of Mathematics (SSC), University of Management and Technology, Lahore, Punjab, Pakistan

Abstract

Magnetohydrodynamic (MHD) flow of fluids with porous media has several applications in medical and industrial fields, including hyperthermia, wound treatment using magnetic field, cancer treatment, heat exchangers, catalytic reactions and distillation towers. In the present work, we explored the two-phase flow of MHD Jeffrey fluid in the presence of porous media through horizontal walls. The uniform liquid properties and magnetic field effects are also considered in this investigation. The heat and mass transfer effects on fluid flow with the addition of Hafnium metallic particles are evaluated. The governing nonlinear momentum and energy equations are found by using Jeffrey’s stress tensor. We discussed three types of flows, namely, Plane Poiseuille, Plane Couette, and Generalized Couette. The effects of all involved parameters on flow and temperature distributions are deliberated with graphs for all cases separately. The results interpreted that increase in values of Darcy number upsurges the velocity and temperature distributions. Radiation parameter declined the temperature of fluid while Brinkman number enhances temperature in all types of flow. Comparison of Newtonian and non-Newtonian fluid is also presented in this study, and we also validated our results by comparing them with the already existing literature results.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3