Mold-level prediction based on long short-term memory model and multi-mode decomposition with mutual information entropy

Author:

Su Wenbin1,Lei Zhufeng1ORCID

Affiliation:

1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China

Abstract

The mold is referred to as the heart of the continuous casting machine. Mold-level control is one of the keys to ensuring the quality of a high-efficiency continuous casting slab. This article addresses the failure of the mold-level prediction model in the actual production process to overcome the impact of noise. To improve the accuracy of mold-level prediction, a novel method for mold-level prediction based on the multi-mode decomposition method and the long short-term memory model is proposed. First, empirical mode decomposition of the mold-level data is performed. The actual eigenmode component number K is obtained through the calculation of the mutual information entropy of the eigenmode components. Then, we perform a K-based variational mode decomposition on the mold-level data. The noise dominant component is denoised by the calculation of the mutual information entropy of the eigenmode components. Moreover, the long short-term memory model is used to predict the noise dominant component and the information dominant component after denoising. Finally, the predicted result is subjected to variational mode decomposition reconstruction to obtain the predicted mold-level data. The experimental results show that compared with the other methods tested, the model has better prediction efficiency, prediction accuracy, and generalization ability. It provides a new idea for mold-liquid-level prediction and continuous casting blank quality assurance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3