Modelling and evaluation of multi-state reliability of repairable non-series manufacturing system with finite buffers

Author:

Duan Jianguo1ORCID,Xie Nan2,Li Lianhui3

Affiliation:

1. China Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai, China

2. Sino-German College of Applied Sciences, Tongji University, Shanghai, China

3. Ningxia Key Laboratory of Intelligent Information and Big Data Processing, North Minzu University, Yinchuan, China

Abstract

The capacity and capability of flexible manufacturing system varies with different market demands. To satisfy the requirements of performance expressions, avoid the problem of combinatorial explosion and consider the influence of intermediate buffer stations, a new reliability modelling and evaluating methodology for repairable non-series hybrid flexible manufacturing systems with finite buffers is proposed using an extended vector universal generating function technique. For repairable modular machines, the Markov models of modular machines are established using stochastic process analysis and the corresponding theoretical steady-state probability in various states is obtained. Furthermore, the original system in combination with multi-state reliability measures of buffer stations is equivalent to a system with independent machines which can be expressed by vector u-functions. Based on the probability distributions of the states of subsystems, the composition operators for series connections and parallel connections are defined. Consequently, the entire system is simplified to one component represented by the polynomial universal generating function. In particular, reliability indicators and measurement models are given to assess the system’s reliability through promoting the basic ones. Finally, a practical case of engine head machining line is utilized to verify the effectiveness of the method. The results demonstrate that the use of vector universal generating functions can describe the system structure and states more appropriately while providing efficient assessment.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3