Imperfection sensitivity analysis for a composite bowed-out shell under axial compression

Author:

Li Zhun12,Pan Guang12ORCID,Shen Kechun12

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China

2. Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an, China

Abstract

In this article, we present a systematic work to investigate the imperfection sensitivity of composite bowed-out shells with different layup patterns under axial compression. Two types of geometric imperfections, including eigenmode-shaped imperfections (produced by a first-order eigenmode imperfection approach and an N-order eigenmode imperfection approach) and dimple-shaped imperfections (produced by a single perturbation load approach and a multiple perturbation load approach), are introduced into the finite element model to predict their knock-down factors. For the eigenmode-shaped imperfections, we show that the knock-down factors predicted by the first-order eigenmode imperfection approach are riskier than the ones predicted by the N-order eigenmode imperfection approach. When adopting the single perturbation load approach, we reveal that the direction of a dimple on the shell makes a negligible effect on axial pressure bearing capacity, while the amplitude of a dimple on the shell plays a significant role in affecting the knock-down factors. Using the multiple perturbation load approach as an extension of the single perturbation load approach, we uncover that the knock-down factors predicted by the multiple perturbation load approach are more conservative than these achieved by the single perturbation load approach. In addition, we also find that the composite bowed-out shells are more sensitive to dimple-shaped imperfection than eigenmode-shaped imperfections. This work provides helpful findings for designing an airplane body and marine risers.

Funder

fundamental research funds for the central universities

Natural Science Basic Research Plan in Shaanxi Province of China

National Key Research and Development Project of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference35 articles.

1. Design and fabrication of submerged cylindrical laminates—II. Effect of fiber pre-stress

2. Koiter WT. On the stability of elastic equilibrium (NASA TT-F-10833). Washington, DC: National Aeronautics and Space Administration, 1967.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3