Investigating the severity of expressway crash based on the random parameter logit model accounting for unobserved heterogeneity

Author:

Ye Fei12ORCID,Cheng Wen23,Wang Changshuai4,Liu Haoxue1,Bai Jiping2

Affiliation:

1. School of Transportation Engineering, Chang’an University, Xi’an, China

2. School of Rail Transit, Zhejiang Institute of Communications, Hangzhou, China

3. School of Economic and Management, Chang’an University, Xi’an, China

4. School of Transportation, Southeast University, Nanjing, China

Abstract

The present study utilized a random parameter logit (RPL) model to explore the nonlinear relationship between explanatory variables and the likelihood of expressway crash severity. The potential unobserved heterogeneity of data brought by China’s road traffic characteristics was fully considered. A total of 1154 crashes happened on Hang-Jin-Qu Expressway from 2013 to 2018 were analyzed. In addition to the conventional impact factors considered in the past, variables related to road geometry were also introduced, which contributed to expressway accidents significantly. The overall stability of the model estimation was examined by likelihood ratio test. Then, the average elastic coefficient of the significant factors at each severity level was also calculated. Several factors that significantly increase the fatal crash probability were highlighted: rainy/snowy/cloudy weather condition, low visibility (100– m), night without light, wet-skid road surface, being female, aged 41+ years, collision with a rigid barrier and some other obstacles, radius and length of horizontal curve, and longitudinal gradient. The parameters of four factors were random and obeyed normal distribution: night without light, being female, driving experience with 10 + years and with large vehicle responsible. These findings provide insights for better understanding of expressway crash severity. Some countermeasures were proposed about driver education, traffic law enforcement, vehicle and road design, environmental improvement, and so on.

Funder

National Key R&D Program of China

national social science fund of china

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3