An improved geometric error analysis method considering the variety of sensitivities over working space

Author:

Liu Xiaojian1ORCID,Wang Yang1,Qiu Lemiao1,Wu Chenrui1,Zhang Peng1,Zhang Shuyou1

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, P.R. China

Abstract

Machine tool accuracy analysis has become increasingly important since accuracy as the major parameter of a machine is to a large extent determined by geometric accuracy design. In order to improve the comprehensiveness and veracity of geometric accuracy design, this article proposes an improved geometric error analysis method considering the variety of sensitivities over working space. A multi-rigid-body model which includes cutting tool’s wear-out error and workpiece’s clamping error is established to represent the position relationship of machine tool’s working components. The expression of geometric error is converted from matrix form to screw form through the screw mapping theory, so that rotational error can be expressed and calculated directly like the translational error. Considering motion errors along axes over the whole working space instead of at a fixed position, an improved sensitivity analysis algorithm is conducted to identify, among 38 components of errors increased the variety with tool wear and clamping errors, which of them have a significant impact on four different types of machine errors. Finally, the proposed method was implemented and validated on a horizontal boring machine, and the sensitivity analysis results over working space would offer vital evidence for the machine’s geometric accuracy design.

Funder

Zhejiang Industrial Project of Public Welfare Technology Research

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3