Affiliation:
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, China
2. Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
3. School of Energy Science and Engineering, Central South University, Changsha, China
Abstract
Ethanol is known as the most widely used alternative fuel for spark-ignition engines. Compared to it, butanol has proved to be a very promising renewable fuel in recent years for desirable properties. The conjoint analysis on combustion, performance, and emissions characteristics of a port fuel injection spark-ignition engine fueled with butanol–gasoline blends was carried out. In comparison with butanol–gasoline blends with various butanol ratio (0–60 vol% referred as G100~B60) and conventional alcohol alternative fuels (methanol, ethanol, and butanol)–gasoline blends, it shows that B30 performs well in engine performance and emissions, including brake thermal efficiency, brake-specific fuel consumption, carbon monoxide, unburned hydrocarbons, and nitrogen oxides. Then, B30 was compared with G100 under various equivalence ratios ( Φ = 0.83–1.25) and engine loads (3 and 5-bar brake mean effective pressure). In summary, B30 presents an advanced combustion phasing, which leads to a 0.3%–2.8% lower brake thermal efficiency than G100 as the engine was running at the spark timing of gasoline’s maximum brake torque (MBT). Therefore, the sparking timing should be postponed when fueled with butanol–gasoline blends. For emissions, the lower carbon monoxide (2.3%–8.7%), unburned hydrocarbons (12.4%–27.5%), and nitrogen oxides (2.8%–19.6%) were shown for B30 compared with G100. Therefore, butanol could be a good alternative fuel to gasoline for its potential to improve combustion efficiency and reduce pollutant emissions.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献