Research on innovative design of a new rope knotter

Author:

Meng Yanmei1,Chen Hao1,Liang Yuan1,Qin Johnny2,Zhao Qinchuan1,Wei Jin1

Affiliation:

1. School of Mechanical Engineering, Guangxi University, Nanning, China

2. Energy, Commonwealth Scientific and Industrial Research Organization, Pullenvale, QLD, Australia

Abstract

Aiming at the complex structure and high manufacturing process requirements of traditional knotter, this article proposes a new rope knotting method. Based on the knotting method, a knotter is designed to use a new mechanism which is made up of two new incomplete gear mechanisms to drive rope clamping mechanism and rope hooking and griping mechanism. First, a kinematic cycle diagram of the knotter is determined, and the structures of each key mechanism are designed. Then, a virtual prototype of the knotter is established by Unigraphics and imported into Automated Dynamic Analysis of Mechanical Systems to analyze the kinematic of each key mechanism. The success rate is 98.4% through 500 physical tests on the physical model of the knotter. The results indicate that the knotting method is reliable. The knotter can meet the requirements of structure, posture, and coordination during knotting process. The new knotter has no separate mechanism for cutting rope and tripping out of the rope buckle. Therefore, the structure is simplified and reduces the design and manufacturing difficulties. Furthermore, the new incomplete gear mechanism solves the problem that in the conventional incomplete gear mechanism, the driven gear can swing at a large angle or even cannot be locked in the case when the locking arc of the passive gear is too short.

Funder

Guangxi Science and Technology Development Plan of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3