NIWAS: A non-interactive watermark authentication scheme for industrial field-programmable gate array designs

Author:

Long Jing1ORCID,Zhang Dafang1,Liang Wei2,Ning Zuoting3,Zhang Qingyong4

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

2. School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China

3. Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Police Academy, Changsha, China

4. School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou, China

Abstract

Except the network attacks, the industrial networked devices in Internet of things are also threatened by intellectual property infringement. Watermarking technique is a prevalent way to avoid this threat. Previous work on authenticating a watermark in industrial intellectual properties easily discloses sensitive information of real embedded watermarks. In this case, the evidence of identifying the ownership of industrial intellectual property may be attacked by the illegal verifiers. Although several watermark detection techniques can address the disclosure of sensitive information in detection procedure, the efficiency of detection is relatively low. Besides, it may yield large communication overhead of multiple authentication rounds. Motivated by the needs of robustness and efficiency, this work proposed a zero-knowledge approach to authenticate ownership of field-programmable gate array intellectual property design in industrial environment, named NIWAS. The prover can convince the verifier that he knows a secret in the suspected intellectual property design via only one interaction. Real locations of watermarks are concealed through location obfuscation. With the received authentication package from the prover, the verifier cannot obtain other useful information about the watermarks. The experiments show that NIWAS achieves high efficiency and robustness of watermark detection.

Funder

Open Research Fund of Hunan Provincial Key Laboratory of Network Investigational Technology

Xiamen Science and Technology Foundation

Research Project supported by Xiamen University of Technology

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3