Affiliation:
1. School of Mechanical Electronic & Information Engineering, China University of Mining & Technology-Beijing, Beijing, P.R. China
2. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, P.R. China
Abstract
This article proposes a design and experimental method of a new inner-rotation nozzle. First, the design model of the inner-rotation nozzle was established based on Abramovich’s maximum flow principle and high-pressure water jet crushing theory. Considering the specific conditions of the negative pressure duster, the reference values of nozzle structure parameters are calculated. The simulation is conducted for studying the relationship between the nozzle’s structure parameters and its performance including water flow velocity at nozzle outlet, atomization effects, and so on. By orthogonal experiment, the reasonable nozzle structure parameters were obtained by analyzing the speed of flow, the amount of air, and so on. Then, a series of nozzles were machined with different size shells and cores. In order to select out the optimum matching of nozzle cores and shells, an experimental system is established. Considering the installation location, wind speed, liquid–gas ratio, and other factors, the optimum matching of the shell core was chosen. At the same time, the application test of the negative pressure duster was carried out on the fully mechanized mining face. The research results show that the removal rate of pulverized coal has a higher improvement, and provides a theoretical basis for the design of negative pressure duster.
Funder
Beijing cross training program for high level talents in higher education institutions
National Undergraduate Innovation and entrepreneurship training program
National Fundamental Research Funds for the Central Universities of China
Beijing college students innovation training project
china university of mining and technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献