A Levenberg-Marquardt backpropagation method for unsteady squeezing flow of heat and mass transfer behaviour between parallel plates

Author:

Khan Imran1,Ullah Hakeem1ORCID,Fiza Mehreen1,Islam Saeed1,Raja Asif Zahoor2,Shoaib Mohammad3,Khan Ilyas4

Affiliation:

1. Department of Mathematics, Abdul Wali Khan University Mardan, 23200, K.P., Pakistan

2. Department of Electrical Engineering, COMSATS University Islamabad, Attock Campus, Attock 43600 Pakistan

3. Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan

4. Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, 72915, Vietnam

Abstract

In this study, a new computing model by developing the strength of feed-forward neural networks with Levenberg-Marquardt Method (NN-BLMM) based backpropagation is used to find the solution of nonlinear system obtained from the governing equations of unsteady squeezing flow of Heat and Mass transfer behaviour between parallel plates. The governing partial differential equations (PDEs) for unsteady squeezing flow of Heat and Mass transfer of viscous fluid are converting into ordinary differential equations (ODEs) with the help of a similarity transformation. A dataset for the proposed NN-BLMM is generated for different scenarios of the proposed model by variation of various embedding parameters squeeze Sq, Prandtl number Pr, Eckert number Ec, Schmidt number Sc and chemical-reaction-parameter [Formula: see text]. Physical interpretation to various embedding parameters is assigned through graphs for squeeze Sq, Prandtl Pr, Eckert Ec, Schmidt Sc and chemical-reaction-parameter [Formula: see text]. The processing of NN-BLMM training (T.R), Testing (T.S) and validation (V.L) is employed for various scenarios to compare the solutions with the reference results. For the fluidic system convergence analysis based on mean square error (MSE), error histogram (E.H) and regression (R.G) plots is considered for the proposed computing infrastructures performance in term of NN-BLMM. The results based on proposed and reference results match in term of convergence up to 10-02 to 10-08 proves the validity of NN-BLMS. The Optimal Homotopy Asymptotic Method (OHAM) is also used for comparison and to validate the results of NN-BLMM.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3