Affiliation:
1. Department of Industrial Design, Xi’an University of Technology, Xi’an, China
2. Shanghai University of Engineering Science, Shanghai, China
Abstract
Impact is a universal phenomenon and has serious influences on the dynamic characteristics of mechanical system, so it is critical to accurately describe the effects of impact. In this work, a numerical and comprehensive method is presented to calculate the impact force in clearance joint during impact process, which has higher effectiveness and accuracy than the most popular used L-N model. Different from traditional contact models, where the coefficient of restitution is assumed to be a constant value nearly to 1 during impact process, the improved model in this work sets up the model of restitution coefficient related to two important parameters for impact phenomenon, which are initial impact velocity and the yield strength of the materials in clearance joints. A great number of numerical and experimental results are introduced and compared to validate the improved contact force model; it needs to be highlighted that the numerical results are based on the improved model and the most popular impact force model presented by Lankarani and Nikravesh, and the experimental results are based on two typical pendulum experimental test rigs. It can be concluded that (1) when compared to the experimental results, the numerical results based on the improved model are in better agreement than those based on Lankarani and Nikravesh impact force model; (2) the numerical results based on the improved model are in reasonable agreement with the experimental results, and the relative errors of impact force and restitution coefficient are all no more than 10% between numerical and experimental results; and (3) the improved contact force model is effective and can exactly describe the impact effects between two bodies in mechanical system.
Funder
Doctor Starting Foundation
the Education Foundation of Shaanxi
Foundation from Xi’an University of Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献