An improved spectral decomposition flexibility perturbation method for finite element model updating

Author:

Yang QW1ORCID,Sun BX1,Lu C1

Affiliation:

1. Department of Civil Engineering, Shaoxing University, Shaoxing, P.R. China

Abstract

Finite element analysis is the most powerful tool to predict the behavior of a structure in engineering practice. Generally, the initial finite element model must be corrected with experimental data due to its complexity. Thus, it is very necessary to study a finite element model updating method with high precision and high efficiency. To this end, this article presented an improved spectral decomposition flexibility perturbation method for structural finite element model updating. The improvements of the proposed method lie in two aspects. First, using the uniform correction model, the proposed method is more economical in computation than the initial method because the spectral decomposition and reorganization of elemental stiffness matrices can be avoided. Second, using the twice singular-value-truncation method, the proposed method has better performance than the initial method in combating data noise. A beam structure is employed to demonstrate the proposed method for model updating in a noisy environment. It was found that the result obtained by least squares estimate is seriously distorted and the result obtained by the first singular value truncation is also not entirely satisfactory. Only the result obtained by the second singular value truncation is the most stable and accurate. Overall, the improved spectral decomposition flexibility perturbation method is robust and effective in small modification case, large modification case, adjacent modification case, and multiple modifications case. The proposed method may be very useful for structural finite element model updating in the noisy environment.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3