Micropolar ferrofluid flow via natural convective about a radiative isoflux sphere

Author:

EL-Kabeir Saber12ORCID,Rashad Ahmed2ORCID,Khan Waqar3,Abdelrahman Zeinab Mahmoud4

Affiliation:

1. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Aswan University, Aswan, Egypt

3. Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia

4. Basic and Applied Sciences Department, College of Engineering and Technology, Arab Academy for Science & Technology and Maritime Transport, Aswan Branch, Egypt

Abstract

Current investigation scrutinizes the magnetohydrodynamic (MHD) natural convection flow of micropolar ferrofluid across an isoflux sphere with the impacts of thermal radiation and partial slip. Cobalt-nanoparticles with kerosene as the base fluid are considered. The governing partial differential conservation equations and convenient boundary conditions are rendered into a nondimensional form. The finite difference method (FDM) is then applied to determine the solution of a collection of resultant equations. The outcomes obtained by FDM have also compared with cited investigation. Illustrations describing influences of prominent parameters which provides physical interpretations of velocity, angular velocity, and temperature fields as well as the skin friction coefficient and Nusselt number are examined in detail with the help of graphical representations. This investigation determined that the skin-friction coefficient and heat transport rate reduced along with augmentation in the magnetic force and micropolar parameter, while opposite performance is adhered with elevating in the thermal radiation. Moreover, the boosted nanoparticle volume fraction reduced the skin friction coefficient and improved the Nusselt number.

Funder

Prince Sattam bin Abdulaziz University

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3