Formation mechanism of surface topography in low-speed wire electrical discharge machining Inconel 718 and its on-line prediction based on acoustic emission technology

Author:

Wang Yan1,He Duxing1,Yang Lin1,Xiong Wei1

Affiliation:

1. Department of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

Abstract

The mechanism of surface topography formation of Inconel 718 in low-speed wire electrical discharge machining was studied, and its on-line prediction based on acoustic emission detection technology is carried out. An optimized truncated cone-shaped thermal conduction model considering the scattering velocity difference between electrons and ions was put forward. Based on this model, discharge craters and temperature variation at different discharge energy conditions were systematically discussed in finite element analysis. Experimentally, five machining regimes that are reduced in accordance with the discharge energy were conducted with acoustic emission detection technology in low-speed wire electrical discharge machining. A novel denoising method has been proposed, which combines filtering analysis and Fast Fourier Transform. The experimental results indicate that acoustic emission testing technique provides great technical support in researching the discharge energy variation rule in low-speed wire electrical discharge machining. It is also concluded that the change trends of the theoretically calculated temperature in the discharge channel and acoustic emission signal root mean square and the surface roughness value and the acoustic emission signal root mean square show a similar exponential growth law. A regression equation about the arithmetic mean roughness ( Ra) values and root mean square values of acoustic emission is established to predict surface roughness value Ra whose error is less than 1%.

Funder

The Innovation and Entrepreneurship Foundation of Jiangsu Province and The Innovation Fund Project for Graduate Student of Shanghai (JWCXSL1302).

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A denoising method for acoustic emission signals based on discrete wavelet transform in WEDM;Third International Conference on Electronic Information Engineering and Data Processing (EIEDP 2024);2024-07-05

2. Performance Studies on the Wire Electric Discharge Machining Characteristics of Stellite-6B Superalloys;Journal of Materials Engineering and Performance;2024-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3