Elastic hydrodynamic lubrication analysis for a sine movable tooth drive

Author:

Xu Lizhong1ORCID,Song Wentao1

Affiliation:

1. Mechanical Engineering Institute, Yanshan University, Qinhuangdao, China

Abstract

The sine movable tooth drive has small radial dimension such that the heat, caused by friction, becomes an important factor in deciding its load-carrying ability. It is important to determine the amount of tooth lubrication in order to reduce the heat caused by the friction. This study provides equations for the meshing performance and provides the forces for the sine movable tooth drive. Using these equations, the minimum oil film thickness for the drive system is investigated. Results show that the minimum film thickness between the movable tooth and input shaft or shell changes periodically along the input shaft rotation angle. A large movable tooth radius and a movable tooth rotation radius could increase the film thickness between the movable tooth and the input shaft or the shell. In addition, a large speed ratio could increase the film thickness between the movable tooth and the input shaft, but this would also decrease the film thickness between the movable tooth and the shell. A large sine amplitude could increase the film thickness between the movable tooth and the input shaft, but this does not change the film thickness between the movable tooth and the shell. Under normal operation speeds, the hydrodynamic lubrication condition occurs between the movable tooth and the input shaft, and the partial membrane hydrodynamic state occurs between the movable tooth and the shell.

Funder

Hebei Province Natural Science Foundation in China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference16 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview of Underwater Connectors;Journal of Marine Science and Engineering;2021-07-27

2. Heat Conduction and Temperature Rise for a Planar Movable Tooth Drive;Journal of Thermal Science and Engineering Applications;2020-07-20

3. Forces and stress for a two-stage planar sine-wave movable tooth drive;Mechanics Based Design of Structures and Machines;2020-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3