Affiliation:
1. School of Earth Science and Engineering, Hohai University, Nanjing, China
Abstract
The dynamic compaction method is effective to reinforce soft soil foundation with a low degree of saturation. However, deep soft soil foundation with high degree of saturation has some different characteristics. It has been widely considered that dynamic compaction method is unsuitable to improve the characters of deep soft soil foundation with high degree of saturation. In this article, we will show that the dynamic compaction method with vacuum well-point dewatering is effective to deep soft soil foundation with high degree of saturation reinforcement. In situ and laboratorial experiments are used to assess the reinforcement effect of the deep soft soil foundation with high degree of saturation. Our results show that the dynamic compaction method causes long dissipation time of pore water pressure, and the dynamic compaction method with vacuum well-point dewatering makes construction time of a project 25% shorter. The effective depth of deep soft soil foundation with high degree of saturation reinforcement using the two experimental methods can reach to 8.0 m. In comparison with the total settlement and layered settlement of the dynamic compaction method with vacuum well-point dewatering, the dynamic compaction method settlement is relatively smaller. For soils with depth of 4 m, the reinforcement effect of dynamic compaction method with vacuum well-point dewatering is obviously superior to dynamic compaction method. Based on these results, we suggest construction procedures for different reinforcement depth of soils and construction time.
Funder
National Natural Science Foundation of China
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献