A new fault diagnosis method based on deep belief network and support vector machine with Teager–Kaiser energy operator for bearings
Author:
Affiliation:
1. School of Vehicle and Energy, Yanshan University, Qinhuangdao, P.R. China
2. School of Electrical Engineering, Yanshan University, Qinhuangdao, P.R. China
Publisher
SAGE Publications
Subject
Mechanical Engineering
Link
http://journals.sagepub.com/doi/pdf/10.1177/1687814017743113
Reference20 articles.
1. On-line chatter detection and identification based on wavelet and support vector machine
2. Multiclass fault diagnosis in gears using support vector machine algorithms based on frequency domain data
3. Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization
4. Fine-tuning Deep Belief Networks using Harmony Search
Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An acoustic emission identification model for train axle fatigue cracks based on deep belief network;Measurement Science and Technology;2024-04-22
2. Unsupervised learning of part-based representations using sparsity optimized auto-encoder for machinery fault diagnosis;Control Engineering Practice;2024-04
3. Development of Intelligent Fault-Tolerant Control Systems with Machine Learning, Deep Learning, and Transfer Learning Algorithms: A Review;Expert Systems with Applications;2024-03
4. Performance evaluation of machine learning algorithms and impact of activation functions in artificial neural network classifier for bearing fault diagnosis;Journal of Vibration and Control;2024-02-29
5. Application of deep learning to fault diagnosis of rotating machineries;Measurement Science and Technology;2024-01-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3