Investigation into dynamic response of a three-point bend specimen in a Hopkinson bar loaded fracture test using numerical methods

Author:

Javed Raja Ahsan1,Shifan Zhu1,Guo Chunhuan2,Vecchio Kenneth S3,Jiang Fengchun2

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, P.R. China

2. Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, P.R. China

3. Department of NanoEngineering, University of California, San Diego, La Jolla, CA, USA

Abstract

Dynamic fracture toughness of engineering materials at loading rates greater than [Formula: see text] is widely investigated using the modified Hopkinson pressure bar apparatus. For accurate measurement of dynamic fracture toughness, it is essential to thoroughly understand the dynamic effects excited by the stress wave, such as stress wave propagation characteristics in bars/cracked specimen, the contact situation between the specimen and loading point or supports, and the dynamic response of the fracture specimen. In this work, full transient dynamic analysis techniques are used to comprehend “loss of contact” situation of cracked fracture specimen with an incident bar (impactor) and a transmission bar (supports) in a Hopkinson bar loaded two-bar/three-point bend test. A modified Hopkinson bar loaded experimental setup, including striker, incident, and transmission bars and three-point bend fracture specimen, is modeled using the commercial software ANSYS. The dynamic responses of the specimens made of titanium alloy, high-strength steel, and aluminum alloy are analyzed, and the specimen contact states with the incident and transmission bars are investigated using stress state contours of the specimen along with nodal displacement of the specimen and the bars. The dynamic fracture toughness values for the three specimens are also calculated and compared with the experimental results. The simulation results from the current two-bar/three-point bend test indicated that no “loss of contact” occurs during the first load duration as is previously proved experimentally.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3