Heat and mass transfer characteristics in flow of bi-viscosity fluid through a curved channel with contracting and expanding walls: A finite difference approach

Author:

Ahmed Raheel1,Ali Nasir1,Khan Sami Ullah2,Chamkha Ali3,Tlili Iskander45

Affiliation:

1. Department of Mathematics and Statistics, International Islamic University Islamabad, Pakistan

2. Department of Mathematics, COMSATS University Islamabad, Sahiwal, Pakistan

3. Mechanical Engineering Department, Prince Mohammad Endowment for Nanoscience and Technology, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia

4. Institute of Research and Development, Duy Tan University, Da Nang, Vietnam

5. Faculty of Civil Engineering, Duy Tan University, Da Nang, Vietnam

Abstract

This article investigates the heat and mass transfer in flow of bi-viscosity fluid through a porous saturated curved channel with sinusoidally deformed walls. The magnetic field and Joule heating effects are also taken into account. The equations describing the flow and heat/mass transfer are developed using curvilinear coordinates. A reduction of these equations is made based on lubrication approximation. The reduced linear ordinary differential equations are integrated numerically using an implicit finite difference scheme. It is observed that, the bi-viscosity fluid parameter, permeability parameter, and Hartmann number have analogous effects on the longitudinal velocity. Moreover, temperature of the fluid, heat coefficient, and mass concentration increase by increasing bi-viscosity fluid parameter, Brinkmann number, and Hartmann number. Further, mass concentration increases by increasing the rate of chemical reaction and bi-viscosity parameter. The size of circulating roll in lower half of the channel boosts up with larger variation of bi-viscosity parameter and permeability parameter. The flow patterns in the channel illustrating the effects of bi-viscosity parameter, permeability parameter, and Hartmann number are also displayed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3