Chaos of flexible rotor system with critical speed in magnetic bearing based on the improved precise Runge–Kutta hybrid integration

Author:

Fang Xi1,Zhang Dongbo1ORCID,Zhang Xiaoyu1,Wu Huachun2,Gao Fei1,He Lang1,Lv Yong1

Affiliation:

1. School of Science, Wuhan University of Technology, Wuhan, China

2. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China

Abstract

Magnetic rotor-bearing system has drawn great attention because of its several advantages compared to existent rotor-bearing system, and explicit Runge–Kutta method has achieved good results in solving dynamic equation. However, research on flexible rotor of magnetic bearing is relatively less. Moreover, explicit Runge–Kutta needs a smaller integral step to ensure the stability of the calculation. In this article, we propose a nonlinear dynamic analysis of flexible rotor of active magnetic bearing established by using the finite element method. The precise Runge–Kutta hybrid integration method and the largest Lyapunov exponent are used to analyze the chaos of the rotor system at the first- and second-order critical speed of the rotor. Experiment on chaos analysis has shown that compared with the explicit Runge–Kutta method, the precise Runge–Kutta hybrid integration method can improve the convergence step of calculation significantly while avoiding iterative solution and maintain high accuracy which is four times the increase of the integral step.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3