Quantitative evaluation of unmanned ground vehicle trajectory based on chaos theory

Author:

Sun Yang12,Xiong Guangming2,Ma Xiqing1,Gong Jianwei2,Chen Huiyan2

Affiliation:

1. Department of Mechanical and Electrical Engineering, Hebei University of Engineering, Hebei, P.R. China

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing, P.R. China

Abstract

The quantitative evaluation of unmanned ground vehicles is difficult. For this problem, we propose a quantitative evaluation method based on chaos theory. First, the ideal trajectory of an unmanned ground vehicle was designed applying the quintic polynomial method, and the deviation time series were obtained by calculating the deviation of the actual trajectory from the ideal trajectory. Then, the phase space of the deviation time series was reconstructed based on the improved algorithm using correlation integral method. Finally, the Lyapunov exponent of the deviation time series was calculated, which was the quantitative presentation of the unmanned ground vehicle’s trajectory. The quantitative presentation of the unmanned ground vehicle’s trajectory for lane keeping, obstacle avoidance, and overtaking lane changing was achieved. The Lyapunov exponent of lane keeping was the least, so the maximum predicted time was the longest. Lane keeping was done the best of all. Experimental results show that the quantitative evaluation method based on chaos theory for unmanned ground vehicle trajectory is feasible and effective.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligence Assessment of Automated Driving Systems Based on Driving Intelligence Quotient;2021 5th CAA International Conference on Vehicular Control and Intelligence (CVCI);2021-10-29

2. Suppression of chaotic vibrations in suspension system of vehicle dynamics using chattering-free optimal sliding mode control;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2019-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3