Analysis of fluid–solid coupling characteristics of tripod sliding universal coupling based on cavitation and thermal effects

Author:

Yang Fuqin1ORCID,Jiang Jingwei1,Li Dong1,Sun Linlin1

Affiliation:

1. College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, People’s Republic of China

Abstract

In this article, a fluid–solid coupling analysis of tripod sliding universal coupling and lubricating oil film was conducted by taking into consideration cavitation and thermal effects. The coupling of the sleeve and slip pin with the lubricant oil film under different pressure differences and frequencies was investigated. Moreover, the study results were compared with the results of fluid–solid coupling under the ideal condition of negligible cavitation and thermal effects. When considering these effects, the deformation and stress values of the sleeve and the slip pin gradually increase as the pressure difference and frequency increase. The deformation and stress values of the sleeve are reduced relative to the calculation results of fluid–solid coupling in ideal conditions. However, the values of the slip pin are increased. Furthermore, when considering the thermal effect, the deformation and stress differences for the sleeve and slip pin decrease as the pressure difference increases. The stress difference of the sleeve grows sharply, whereas the deformation difference of the slip pin increases only slightly as the frequency increases.

Funder

key technology research and development program of shandong

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3