Free vibration of spherical cap subjected to various boundary conditions

Author:

Du Yuan1ORCID,Huo Ruidong1,Pang Fuzhen1ORCID,Li Shuo1,Huang Yongming1,Zhang Hang1

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, P.R. China

Abstract

In this article, the free vibration characteristics of spherical caps with different thickness distribution subjected to general boundary conditions are investigated using a semi-analytical approach. Based on the theory of thin shell, the theoretical model of spherical cap is established. Spherical caps are partitioned into sections along the meridional orientation. The displacement components of spherical caps along the meridional direction are represented by Jacobi polynomials. Meanwhile, Fourier series are utilized to express displacement components in the circumferential direction. Various boundary conditions can be easily achieved by the penalty method of the spring stiffness technique. The vibration characteristics of spherical caps are derived by means of the Rayleigh–Ritz energy method. Reliability and validity of the current method are verified by convergence studies and numerical verification. The comparison of results between the current method, finite element method, and those published in the literature prove that the current method works well when handling free vibration of spherical caps. More results of spherical caps with different geometric specifications and edge conditions are displayed in the form of table and graphic, which may serve as a reference for future studies.

Funder

Assembly Advanced Research Fund of China

National Natural Science Foundation of China

Naval pre-research project, China Postdoctoral Science Foundation

High Technology Ship Funds of Ministry of Industry and Information of P.R. China, Assembly forecasting fund

Fundamental Research Funds for the Central University

National key Research and Development program

China Postdoctoral Science Foundation

Ph.D. Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3