Damage evaluation of square steel tubes at material and component levels based on a cyclic loading experiment

Author:

Nie Gui-bo1ORCID,Yang Tao-yuan1,Zhi Xu-dong2,Liu Kun2

Affiliation:

1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China

2. School of Civil Engineering, Harbin Institute of Technology, Harbin, China

Abstract

Circular and square steel tubes are two of the most commonly used members in the construction industry in China. Material damage and its accumulation cannot be neglected when structures undergo obvious deformation and material plasticity during severe earthquakes. In another published paper, a material damage constitutive model for Q235 steel was derived, and some of its parameters were defined based on a cyclic test. This article focuses on developing a normalized constitutive model at the material level and a damage model at the component level for square steel tubes based on experimentally derived results. First, the material damage behavior of 10 square steel tubes under five cyclic load schemes was investigated. The material damage and its accumulation at the material level were defined using a user-defined material sub-routine (UMAT) in the finite element software Abaqus. Next, the parameters in the constitutive model were calibrated by the fitting degree between the test result and numerical result. Furthermore, based on the experimental and numerical data, a damage model combined with deformation and energy was developed at the component level to evaluate the overall damage behavior of the specimens. Finally, the parameters in the damage model were calibrated based on the responses of the specimens at the time of collapse. The effect of material damage behavior and the accumulation of damage were found to significantly reduce the collapse load of specimens, which must be considered in the theoretical analysis and design process. The constitutive model and damage model developed in this article can be used to quantify the degree of damage of the material and components of structures under earthquake loads.

Funder

the China Earthquake Administration Fundamental Research Program

Program for Innovative Research Team in China Earthquake Administration

National Natural Science Foundation of Heilongjiang Province, China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bree’s diagram for functionally graded beam under cyclic thermal and axial loads;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2022-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3