State of health prediction of medical lithium batteries based on multi-scale decomposition and deep learning

Author:

Liu Chang Chun1ORCID,Wu Tao1,He Cheng2

Affiliation:

1. School of Environmental and Material Engineering, Shanghai Polytechnic University, Shanghai, China

2. School of Intelligent Manufacturing Engineering, Shanghai Polytechnic University, Shanghai, China

Abstract

To guarantee rescue time and reduce medical accidents, a health degradation prediction model of medical lithium-ion batteries based on multi-scale deep neural network was proposed aiming at the problems of poor model adaptability and inaccurate prediction in current state of health prediction methods. The collected energy data of medical lithium-ion batteries were decomposed into main trend data and fluctuation data by ensemble empirical mode decomposition and correlation analysis. Then, deep Boltzmann machines and long short-term memory were used to model the main trend and fluctuation data, respectively. The predicting outcomes of deep Boltzmann machines and long short-term memory were effectively integrated to obtain the health predicted results of medical lithium-ion battery. The experimental results show that the method can effectively fit the health trend of medical lithium-ion batteries and obtain accurate state of health prediction results. The performance of the method is better than other typical prediction methods.

Funder

Subject funding of Shanghai Polytechnic University

Shanghai Polytechnic University Graduate Program Fund

Shanghai Science and Technology Agriculture Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3