Simulation and experimental study of a new structural rubber seal for the roller-cone bit under high temperature

Author:

Chen Lin1,Lin Wei2ORCID,Han Yiwei3ORCID,Ai Zhijiu3,Kuang Yuchun3,Yang Chunlei4

Affiliation:

1. Changqing Drilling Engineering Corporation, Chuanqing Drilling Engineering Co. Ltd., CNPC, Xi’an, Shanxi, China

2. School of Engineering, Southwest Petroleum University, Nanchong Campus, Nanchong, Sichuan, China

3. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, Sichuan, China

4. Sinopec Kingdream Drilling and Oil Machinery Co. Ltd, Wuhan, Hubei, China

Abstract

Seal element is an important component of roller-cone bit. In order to improve the sealing performance and service life of roller-cone bit under high temperature, a new seal structure with multi-segment arcs is designed and the structural parameters of this sealing ring are optimized by response surface method and finite element method. Firstly, the hydrogenated nitrile-butadiene rubber is used to improve the seal performance under high temperature, and the uniaxial, planar, and biaxial tensile experiments are carried out to study the constitutive model of this rubber. Then, a three-dimension transient thermo-mechanical coupling model is established. The comparison of sealing performance between the new structural seal and the traditional O-ring seal is implemented under high temperature through the proposed FEM and laboratory experiments. The results show that the new structural seal has lower contact pressure and Mises stress than the standard O-ring seal, and the service life of the former is almost twice of the later one. Additionally, a composite drill bit using the new structural seal is applied to a deep drilling. After servicing a certain time, it shows that the wearing capacity is very small. The results show that the new structure seal ring can adapt to high temperature environment and the optimization method is feasible.

Funder

national natural science foundation of china

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3