Design optimization of multi-objective proportional–integral–derivative controllers for enhanced handling quality of a twin-engine, propeller-driven airplane

Author:

Rostami Mohsen1ORCID,Chung Joon1,Park Hyeong Uk1

Affiliation:

1. Department of Aerospace Engineering, Ryerson University, Toronto, ON, Canada

Abstract

Herein, the design optimization of multi-objective controllers for the lateral–directional motion using proportional–integral–derivative controllers for a twin-engine, propeller-driven airplane is presented. The design optimization has been accomplished using the genetic algorithm and the main goal was to enhance the handling quality of the aircraft. The proportional–integral–derivative controllers have been designed such that not only the stability of the lateral–directional motion was satisfied but also the optimum result in longitudinal trim condition was achieved through genetic algorithm. Using genetic algorithm optimization, the handling quality was improved and placed in level 1 from level 2 for the proposed aircraft. A comprehensive sensitivity analysis to different velocities, altitudes and centre of mass positions is presented. Also, the performance of the genetic algorithm has been compared to the case where the particle swarm optimization tool is implemented. In this work, the aerodynamic coefficients as well as the stability and control derivatives were predicted using analytical and semi-empirical methods validated for this type of aircraft.

Funder

Columbiad Launch Services Inc.

Mitacs

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3