Research on bolt pre-tightening and relaxation mechanism under transverse load

Author:

Gao Dawei1,Gong Jiacheng1ORCID,Tian Zhongling1,Zheng Tengfei1

Affiliation:

1. College of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

Abstract

In order to predict the bolt’s stress distribution under the pre-tightening state and the loosening process under the transverse load, a 3D model considering the bolt thread structure was established by finite element method (FEM). In this study, the looseness effect of transverse load amplitude, the friction coefficient of the bolt head load bearing surface and the thread contact surface are mainly studied. The result indicated that the stress under bolt pre-tightening is mainly concentrated on the contact part of the bolt’s head and bar. At the contact area of the load threads at one end and the transition part between the bolt bar and the thread, the stress and axial direction of the thread part are offset. Under the transverse displacement load, the sliding of the bolt can be divided into three stages: full contact, viscous contact, and full slip. The numerical model of bolt relaxation obtained in this paper can provide reference for the application, checking and prediction of threaded fasteners.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel static model of planetary roller screw mechanisms based on an energy method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-09-03

2. Probabilistic analysis of bolted joint anti-loosening under cyclic transverse load;Mechanics Based Design of Structures and Machines;2024-02-13

3. Application of SLAM in bolt tightening monitoring process based on intelligent data algorithm analysis;Applied Mathematics and Nonlinear Sciences;2023-10-28

4. Method for Evaluating Bolt Competitive Failure Life Under Composite Excitation;Chinese Journal of Mechanical Engineering;2023-08-09

5. Modeling and free vibration analysis for bolted composite plate under inconsistent pre-tightening condition;Composite Structures;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3