Numerical investigations of solar-assisted hybrid desiccant evaporative cooling system for hot and humid climate

Author:

Hussain Shafqat1ORCID,Kalendar Abdulrahim2,Rafique Muhammad Zeeshan1,Oosthuizen Patrick3

Affiliation:

1. Department of Mechanical Engineering, The University of Lahore, Lahore, Pakistan

2. Department of Mechanical Power and Refrigeration Technology, College of Technological Studies, The Public Authority for Applied Education and Training (PAAET), Kuwait City, Kuwait

3. Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON, Canada

Abstract

This article presents numerical investigations of the solar-assisted hybrid desiccant evaporative cooling system integrated with standard air collectors for applications under the hot and humid climatic conditions of Kuwait city. The objective is to introduce the energy-efficient and carbon-free solar-assisted hybrid desiccant evaporative cooling system to alleviate the principal problems of electricity consumption and carbon emissions resulting from the use of the conventional vapor-compression cooling systems. In the normal building, during cooling load operation, the solar-assisted hybrid desiccant evaporative cooling system can cope with the cooling load particularly sensible by evaporative cooling and latent through desiccant dehumidification. The outcomes of this work indicate that solar-assisted hybrid desiccant evaporative cooling device integrated with air collectors is capable of providing average coefficient of performance of 0.85 and has the potential to provide cooling with energy saving when compared with conventional vapor-compression refrigeration systems. It was concluded that under the intense outdoor environmental conditions (ambient air at greater than 45°C and 60% relative humidity), the delivered supply air from the evaporative cooling was nearly at 27°C and 65% relative humidity. To solve this problem, the system was assisted with conventional cooling coil (evaporator of heat pump) to supply air at comfortable conditions in the conditioned space.

Funder

College of Technological Studies-PAAET, Shuwaikh, Kuwait

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3