A review on the thermal performance of nanofluid inside circular tube with twisted tape inserts

Author:

Ahmad Saadah12ORCID,Abdullah Shahrir1,Sopian Kamaruzzaman3

Affiliation:

1. Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia

2. School of Manufacturing Engineering, Universiti Malaysia Perlis (UniMAP), Arau, Malaysia

3. Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi, Malaysia

Abstract

Working fluid with higher thermal conductivity and tube with better fluid mixing are two crucial elements for heat transfer enhancement in heat exchanger system. Hence, several methods and techniques have been explored to improve heat transfer efficiency, including dispersing nanoparticles into conventional heat transfer fluid and inserting instruments inside the tube of the heat exchanger. Studies have shown that nanofluid can improve heat transfer efficiency of the system due to its higher thermal conductivity and drastic Brownian motion of nanoparticles while inserts within tube can improve heat transfer efficiency by increasing axial velocity of working fluid for better fluid mixing. This article summarized 109 of journals from recent research on heat transfer enhancement of nanofluid flowing inside the tube with inserts as well as discussing the significant parameters that affected the system’s efficiency such as nanoparticles’ volume fraction, Reynolds number and types and configurations of inserts. Ultimately, analysis will be carried out to determine the most suitable modification of twisted tape inserts with the most optimum value of nanoparticle volume fraction for turbulence flow regime. Finally, some problems that need to be solved for future research such as agglomeration and pressure drop are discussed.

Funder

Universiti Kebangsaan Malaysia

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3