Tunnel boring machine cutterhead crack propagation life prediction with time integration method

Author:

Li Jianbin1,Zhang Zhange2ORCID,Meng Zhichao2,Huo Junzhou2,Xu Zhaohui2,Chen Jing3

Affiliation:

1. China Railway Hi-Tech Industry Co., Ltd, Beijing, People’s Republic of China

2. School of Mechanical Engineering, Dalian University of Technology, Dalian, People’s Republic of China

3. School of Navigation and Naval Architecture, Dalian Ocean University, Dalian, People’s Republic of China

Abstract

Fatigue damage is one of the most common failure modes of large-scale engineering equipment, especially the full-face tunnel boring machine with characteristics of a thick plate structure bearing strong impact load. It is difficult to predict the location and propagation life of crack of cutterhead under strong impact load. Unseasonal maintenance of equipment caused by inaccurate prediction of life cycle of cutterhead seriously affects the construction efficiency of the equipment and the life safety of the operators. Determining the crack location of tunnel boring machine cutterhead structure under strong impact load and predicting the crack propagation life are difficult scientific problems. To solve them, first, the location of the stress concentration of the cutterhead is determined by using finite element analysis method of statics. Second, prediction model for crack propagation life of tunnel boring machine cutterhead characteristic substructure based on time integration is built. And the test of crack growth of cutterhead characteristic substructure is performed. The feasibility and accuracy of the prediction model are verified by contrasting crack prediction models and the results of the test. Finally, the life prediction of tunnel boring machine cutterhead of water diversion project in Northwest Liaoning Province is carried out by using crack propagation model based on time integration. Results show that the maximum error of theoretical prediction and experimental results of crack propagation is 16%. So the feasibility of crack propagation model based on time integration in predicting the crack growth of cutterhead is verified. It is predicted that the tunnel boring machine cutterhead panel can work normally for 5.9 km under the condition of ultimate load. Building the crack propagation model considering the influence of plate thickness and strong impact load has important research value for improving the working efficiency of engineering equipment, prolonging service time, and improving the working safety.

Funder

NSFC-Liaoning United Key Fund

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3