Corrosion behavior in heat pipe

Author:

Rodbumrung Anurak1,Rittidech Sampan1,Bubphachot Bopit1

Affiliation:

1. Heat-Pipe and Thermal Tools Design Research Unit (HTDR), Department of Mechanical Engineering, Faculty of Engineering, Mahasarakham University, Maha Sarakham, Thailand

Abstract

The aim of this study was to perform life testing and determine the effect of working fluid on the corrosion of a heat pipe with a sintered wick. The heat pipe was made from a copper tube. The inner heat pipe was filled with 99.97% pure copper powder as a dendritic for the sintering process. The heat pipe had an outer diameter of 6 mm with a length of 200 mm, and distilled water and ethanol were the working fluids. The operating temperature at the evaporator was 125°C. The analysis consisted of using a scanning electron microscope, energy dispersive X-ray spectrometry and atomic absorption spectroscopy. The results of the scanning electron microscope and energy dispersive X-ray spectrometry analysis showed that the corrosion of the heat pipe was uniform. The result of the atomic absorption spectroscopy indicated that the concentration of the copper in the ethanol as the working fluid was greater than in the distilled water as the working fluid, and the highest concentration of copper particles in the ethanol was 22.7499 ppm or 0.0409 mg after testing for 3000 h. The concentration of copper was higher when the length of the life test increased due to corrosion of the heat pipe.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Failure probability evaluation for a weld of the heat pipe in the Mega-Power heat pipe cooled reactor;Annals of Nuclear Energy;2022-11

2. Influence of the Corrosion Process on Thermotechnical Characteristics of Heat Pipes of Low-Temperature Range;Journal of Engineering Physics and Thermophysics;2022-01

3. Heat Transfer Performance of Cooling Device for Avionics Equipment Using Heat Pipe;Transactions of the Korean Society of Mechanical Engineers - B;2021-03-31

4. Behavior of Corrosion of a Heat Pipe Cooling Device in a Computer;Engineering, Technology & Applied Science Research;2017-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3