Virtual Guide Dog: Next-generation pedestrian signal for the visually impaired

Author:

Zhong Zijia1ORCID,Lee Joyoung2ORCID

Affiliation:

1. University of Delaware, Newark, DE, USA

2. John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA

Abstract

Accessible pedestrian signal was proposed as a mean to achieve the same level of service that is set forth by the Americans with Disabilities Act for the visually impaired. One of the major issues of existing accessible pedestrian signals is the failure to deliver adequate crossing information for the visually impaired. This article presents a mobile-based accessible pedestrian signal application, namely, Virtual Guide Dog. Integrating intersection information and onboard sensors (e.g. GPS, compass, accelerometer, and gyroscope sensor) of modern smartphones, the Virtual Guide Dog application can notify the visually impaired: (1) the close proximity of an intersection and (2) the street information for crossing. By employing a screen tapping interface, Virtual Guide Dog can remotely place a pedestrian crossing call to the controller, without the need of using a pushbutton. In addition, Virtual Guide Dog informs VIs the start of a crossing phase using text-to-speech technology. The proof-of-concept test shows that Virtual Guide Dog keeps the users informed about the remaining distance as they are approaching the intersection. It was also found that the GPS-only mode is accompanied by greater distance deviation compared to the mode jointly operating with both GPS and cellular positioning.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Astute Assistance System for Blind and Visually Impaired People;2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV);2024-03-11

2. Inertial Measurement Unit Sensors in Assistive Technologies for Visually Impaired People, a Review;Sensors;2021-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3