First-passage probability of the deflection of a cable-stayed bridge under long-term site-specific traffic loading

Author:

Lu Naiwei1,Noori Mohammad12,Liu Yang3

Affiliation:

1. International Institute for Urban Systems Engineering, School of Civil Engineering, Southeast University, Nanjing, China

2. Department of Mechanical Engineering, California Polytechnic State University, San Luis Obispo, CA, USA

3. School of Civil Engineering and Architecture, Changsha University of Science & Technology, Changsha, China

Abstract

Long-span bridges suffer from higher traffic loads and the simultaneous presence of multiple vehicles, which in conjunction with the steady traffic growth may pose a threat to the bridge safety. This study presents a methodology for first-passage probability evaluation of long-span bridges subject to stochastic heavy traffic loading. Initially, the stochastic heavy traffic loading was simulated based on long-term weigh-in-motion measurements of a highway bridge in China. A computational framework was presented integrating Rice’s level-crossing theory and the first-passage criterion. The effectiveness of the computational framework was demonstrated through a case study of a cable-stayed bridge. Numerical results show that the upper tail fitting of the up-crossing rate is an appropriate description of probability characteristics of the extreme traffic load effects of long-span bridges. The average daily truck traffic growth increases the probability of exceedance due to an intensive heavy traffic flow and results in a higher first-passage probability, but this increased trend is weakening as the continuous increase of the traffic volume. Since the sustained growth of gross vehicle weight has a constant impact on the probability of failure, setting a reasonable threshold overload ratio is an effective scheme as a traffic management to ensure the bridge serviceability.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3